Copied to
clipboard

G = C3314SD16order 432 = 24·33

6th semidirect product of C33 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C3314SD16, C12.29S32, C324C89S3, (C3×C6).79D12, C338Q82C2, D12.1(C3⋊S3), (C3×D12).11S3, (C3×C12).117D6, (C32×C6).34D4, C328(D4.S3), (C32×D12).4C2, C2.5(C337D4), C6.2(C327D4), C3215(C24⋊C2), C6.23(C3⋊D12), C32(D12.S3), C31(C329SD16), (C32×C12).13C22, C4.9(S3×C3⋊S3), C12.31(C2×C3⋊S3), (C3×C324C8)⋊4C2, (C3×C6).57(C3⋊D4), SmallGroup(432,441)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C3314SD16
C1C3C32C33C32×C6C32×C12C32×D12 — C3314SD16
C33C32×C6C32×C12 — C3314SD16
C1C2C4

Generators and relations for C3314SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, dad-1=a-1, ae=ea, bc=cb, dbd-1=b-1, be=eb, cd=dc, ece=c-1, ede=d3 >

Subgroups: 936 in 168 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, SD16, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C33, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C62, C24⋊C2, D4.S3, S3×C32, C32×C6, C3×C3⋊C8, C324C8, C3×D12, C324Q8, D4×C32, C335C4, C32×C12, S3×C3×C6, D12.S3, C329SD16, C3×C324C8, C32×D12, C338Q8, C3314SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, C24⋊C2, D4.S3, C3⋊D12, C327D4, S3×C3⋊S3, D12.S3, C329SD16, C337D4, C3314SD16

Smallest permutation representation of C3314SD16
On 144 points
Generators in S144
(1 68 109)(2 110 69)(3 70 111)(4 112 71)(5 72 105)(6 106 65)(7 66 107)(8 108 67)(9 20 144)(10 137 21)(11 22 138)(12 139 23)(13 24 140)(14 141 17)(15 18 142)(16 143 19)(25 94 44)(26 45 95)(27 96 46)(28 47 89)(29 90 48)(30 41 91)(31 92 42)(32 43 93)(33 50 58)(34 59 51)(35 52 60)(36 61 53)(37 54 62)(38 63 55)(39 56 64)(40 57 49)(73 114 123)(74 124 115)(75 116 125)(76 126 117)(77 118 127)(78 128 119)(79 120 121)(80 122 113)(81 104 134)(82 135 97)(83 98 136)(84 129 99)(85 100 130)(86 131 101)(87 102 132)(88 133 103)
(1 102 116)(2 117 103)(3 104 118)(4 119 97)(5 98 120)(6 113 99)(7 100 114)(8 115 101)(9 44 49)(10 50 45)(11 46 51)(12 52 47)(13 48 53)(14 54 41)(15 42 55)(16 56 43)(17 37 30)(18 31 38)(19 39 32)(20 25 40)(21 33 26)(22 27 34)(23 35 28)(24 29 36)(57 144 94)(58 95 137)(59 138 96)(60 89 139)(61 140 90)(62 91 141)(63 142 92)(64 93 143)(65 122 129)(66 130 123)(67 124 131)(68 132 125)(69 126 133)(70 134 127)(71 128 135)(72 136 121)(73 107 85)(74 86 108)(75 109 87)(76 88 110)(77 111 81)(78 82 112)(79 105 83)(80 84 106)
(1 116 102)(2 117 103)(3 118 104)(4 119 97)(5 120 98)(6 113 99)(7 114 100)(8 115 101)(9 44 49)(10 45 50)(11 46 51)(12 47 52)(13 48 53)(14 41 54)(15 42 55)(16 43 56)(17 30 37)(18 31 38)(19 32 39)(20 25 40)(21 26 33)(22 27 34)(23 28 35)(24 29 36)(57 144 94)(58 137 95)(59 138 96)(60 139 89)(61 140 90)(62 141 91)(63 142 92)(64 143 93)(65 122 129)(66 123 130)(67 124 131)(68 125 132)(69 126 133)(70 127 134)(71 128 135)(72 121 136)(73 85 107)(74 86 108)(75 87 109)(76 88 110)(77 81 111)(78 82 112)(79 83 105)(80 84 106)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 24)(2 19)(3 22)(4 17)(5 20)(6 23)(7 18)(8 21)(9 105)(10 108)(11 111)(12 106)(13 109)(14 112)(15 107)(16 110)(25 98)(26 101)(27 104)(28 99)(29 102)(30 97)(31 100)(32 103)(33 115)(34 118)(35 113)(36 116)(37 119)(38 114)(39 117)(40 120)(41 82)(42 85)(43 88)(44 83)(45 86)(46 81)(47 84)(48 87)(49 79)(50 74)(51 77)(52 80)(53 75)(54 78)(55 73)(56 76)(57 121)(58 124)(59 127)(60 122)(61 125)(62 128)(63 123)(64 126)(65 139)(66 142)(67 137)(68 140)(69 143)(70 138)(71 141)(72 144)(89 129)(90 132)(91 135)(92 130)(93 133)(94 136)(95 131)(96 134)

G:=sub<Sym(144)| (1,68,109)(2,110,69)(3,70,111)(4,112,71)(5,72,105)(6,106,65)(7,66,107)(8,108,67)(9,20,144)(10,137,21)(11,22,138)(12,139,23)(13,24,140)(14,141,17)(15,18,142)(16,143,19)(25,94,44)(26,45,95)(27,96,46)(28,47,89)(29,90,48)(30,41,91)(31,92,42)(32,43,93)(33,50,58)(34,59,51)(35,52,60)(36,61,53)(37,54,62)(38,63,55)(39,56,64)(40,57,49)(73,114,123)(74,124,115)(75,116,125)(76,126,117)(77,118,127)(78,128,119)(79,120,121)(80,122,113)(81,104,134)(82,135,97)(83,98,136)(84,129,99)(85,100,130)(86,131,101)(87,102,132)(88,133,103), (1,102,116)(2,117,103)(3,104,118)(4,119,97)(5,98,120)(6,113,99)(7,100,114)(8,115,101)(9,44,49)(10,50,45)(11,46,51)(12,52,47)(13,48,53)(14,54,41)(15,42,55)(16,56,43)(17,37,30)(18,31,38)(19,39,32)(20,25,40)(21,33,26)(22,27,34)(23,35,28)(24,29,36)(57,144,94)(58,95,137)(59,138,96)(60,89,139)(61,140,90)(62,91,141)(63,142,92)(64,93,143)(65,122,129)(66,130,123)(67,124,131)(68,132,125)(69,126,133)(70,134,127)(71,128,135)(72,136,121)(73,107,85)(74,86,108)(75,109,87)(76,88,110)(77,111,81)(78,82,112)(79,105,83)(80,84,106), (1,116,102)(2,117,103)(3,118,104)(4,119,97)(5,120,98)(6,113,99)(7,114,100)(8,115,101)(9,44,49)(10,45,50)(11,46,51)(12,47,52)(13,48,53)(14,41,54)(15,42,55)(16,43,56)(17,30,37)(18,31,38)(19,32,39)(20,25,40)(21,26,33)(22,27,34)(23,28,35)(24,29,36)(57,144,94)(58,137,95)(59,138,96)(60,139,89)(61,140,90)(62,141,91)(63,142,92)(64,143,93)(65,122,129)(66,123,130)(67,124,131)(68,125,132)(69,126,133)(70,127,134)(71,128,135)(72,121,136)(73,85,107)(74,86,108)(75,87,109)(76,88,110)(77,81,111)(78,82,112)(79,83,105)(80,84,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,24)(2,19)(3,22)(4,17)(5,20)(6,23)(7,18)(8,21)(9,105)(10,108)(11,111)(12,106)(13,109)(14,112)(15,107)(16,110)(25,98)(26,101)(27,104)(28,99)(29,102)(30,97)(31,100)(32,103)(33,115)(34,118)(35,113)(36,116)(37,119)(38,114)(39,117)(40,120)(41,82)(42,85)(43,88)(44,83)(45,86)(46,81)(47,84)(48,87)(49,79)(50,74)(51,77)(52,80)(53,75)(54,78)(55,73)(56,76)(57,121)(58,124)(59,127)(60,122)(61,125)(62,128)(63,123)(64,126)(65,139)(66,142)(67,137)(68,140)(69,143)(70,138)(71,141)(72,144)(89,129)(90,132)(91,135)(92,130)(93,133)(94,136)(95,131)(96,134)>;

G:=Group( (1,68,109)(2,110,69)(3,70,111)(4,112,71)(5,72,105)(6,106,65)(7,66,107)(8,108,67)(9,20,144)(10,137,21)(11,22,138)(12,139,23)(13,24,140)(14,141,17)(15,18,142)(16,143,19)(25,94,44)(26,45,95)(27,96,46)(28,47,89)(29,90,48)(30,41,91)(31,92,42)(32,43,93)(33,50,58)(34,59,51)(35,52,60)(36,61,53)(37,54,62)(38,63,55)(39,56,64)(40,57,49)(73,114,123)(74,124,115)(75,116,125)(76,126,117)(77,118,127)(78,128,119)(79,120,121)(80,122,113)(81,104,134)(82,135,97)(83,98,136)(84,129,99)(85,100,130)(86,131,101)(87,102,132)(88,133,103), (1,102,116)(2,117,103)(3,104,118)(4,119,97)(5,98,120)(6,113,99)(7,100,114)(8,115,101)(9,44,49)(10,50,45)(11,46,51)(12,52,47)(13,48,53)(14,54,41)(15,42,55)(16,56,43)(17,37,30)(18,31,38)(19,39,32)(20,25,40)(21,33,26)(22,27,34)(23,35,28)(24,29,36)(57,144,94)(58,95,137)(59,138,96)(60,89,139)(61,140,90)(62,91,141)(63,142,92)(64,93,143)(65,122,129)(66,130,123)(67,124,131)(68,132,125)(69,126,133)(70,134,127)(71,128,135)(72,136,121)(73,107,85)(74,86,108)(75,109,87)(76,88,110)(77,111,81)(78,82,112)(79,105,83)(80,84,106), (1,116,102)(2,117,103)(3,118,104)(4,119,97)(5,120,98)(6,113,99)(7,114,100)(8,115,101)(9,44,49)(10,45,50)(11,46,51)(12,47,52)(13,48,53)(14,41,54)(15,42,55)(16,43,56)(17,30,37)(18,31,38)(19,32,39)(20,25,40)(21,26,33)(22,27,34)(23,28,35)(24,29,36)(57,144,94)(58,137,95)(59,138,96)(60,139,89)(61,140,90)(62,141,91)(63,142,92)(64,143,93)(65,122,129)(66,123,130)(67,124,131)(68,125,132)(69,126,133)(70,127,134)(71,128,135)(72,121,136)(73,85,107)(74,86,108)(75,87,109)(76,88,110)(77,81,111)(78,82,112)(79,83,105)(80,84,106), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,24)(2,19)(3,22)(4,17)(5,20)(6,23)(7,18)(8,21)(9,105)(10,108)(11,111)(12,106)(13,109)(14,112)(15,107)(16,110)(25,98)(26,101)(27,104)(28,99)(29,102)(30,97)(31,100)(32,103)(33,115)(34,118)(35,113)(36,116)(37,119)(38,114)(39,117)(40,120)(41,82)(42,85)(43,88)(44,83)(45,86)(46,81)(47,84)(48,87)(49,79)(50,74)(51,77)(52,80)(53,75)(54,78)(55,73)(56,76)(57,121)(58,124)(59,127)(60,122)(61,125)(62,128)(63,123)(64,126)(65,139)(66,142)(67,137)(68,140)(69,143)(70,138)(71,141)(72,144)(89,129)(90,132)(91,135)(92,130)(93,133)(94,136)(95,131)(96,134) );

G=PermutationGroup([[(1,68,109),(2,110,69),(3,70,111),(4,112,71),(5,72,105),(6,106,65),(7,66,107),(8,108,67),(9,20,144),(10,137,21),(11,22,138),(12,139,23),(13,24,140),(14,141,17),(15,18,142),(16,143,19),(25,94,44),(26,45,95),(27,96,46),(28,47,89),(29,90,48),(30,41,91),(31,92,42),(32,43,93),(33,50,58),(34,59,51),(35,52,60),(36,61,53),(37,54,62),(38,63,55),(39,56,64),(40,57,49),(73,114,123),(74,124,115),(75,116,125),(76,126,117),(77,118,127),(78,128,119),(79,120,121),(80,122,113),(81,104,134),(82,135,97),(83,98,136),(84,129,99),(85,100,130),(86,131,101),(87,102,132),(88,133,103)], [(1,102,116),(2,117,103),(3,104,118),(4,119,97),(5,98,120),(6,113,99),(7,100,114),(8,115,101),(9,44,49),(10,50,45),(11,46,51),(12,52,47),(13,48,53),(14,54,41),(15,42,55),(16,56,43),(17,37,30),(18,31,38),(19,39,32),(20,25,40),(21,33,26),(22,27,34),(23,35,28),(24,29,36),(57,144,94),(58,95,137),(59,138,96),(60,89,139),(61,140,90),(62,91,141),(63,142,92),(64,93,143),(65,122,129),(66,130,123),(67,124,131),(68,132,125),(69,126,133),(70,134,127),(71,128,135),(72,136,121),(73,107,85),(74,86,108),(75,109,87),(76,88,110),(77,111,81),(78,82,112),(79,105,83),(80,84,106)], [(1,116,102),(2,117,103),(3,118,104),(4,119,97),(5,120,98),(6,113,99),(7,114,100),(8,115,101),(9,44,49),(10,45,50),(11,46,51),(12,47,52),(13,48,53),(14,41,54),(15,42,55),(16,43,56),(17,30,37),(18,31,38),(19,32,39),(20,25,40),(21,26,33),(22,27,34),(23,28,35),(24,29,36),(57,144,94),(58,137,95),(59,138,96),(60,139,89),(61,140,90),(62,141,91),(63,142,92),(64,143,93),(65,122,129),(66,123,130),(67,124,131),(68,125,132),(69,126,133),(70,127,134),(71,128,135),(72,121,136),(73,85,107),(74,86,108),(75,87,109),(76,88,110),(77,81,111),(78,82,112),(79,83,105),(80,84,106)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,24),(2,19),(3,22),(4,17),(5,20),(6,23),(7,18),(8,21),(9,105),(10,108),(11,111),(12,106),(13,109),(14,112),(15,107),(16,110),(25,98),(26,101),(27,104),(28,99),(29,102),(30,97),(31,100),(32,103),(33,115),(34,118),(35,113),(36,116),(37,119),(38,114),(39,117),(40,120),(41,82),(42,85),(43,88),(44,83),(45,86),(46,81),(47,84),(48,87),(49,79),(50,74),(51,77),(52,80),(53,75),(54,78),(55,73),(56,76),(57,121),(58,124),(59,127),(60,122),(61,125),(62,128),(63,123),(64,126),(65,139),(66,142),(67,137),(68,140),(69,143),(70,138),(71,141),(72,144),(89,129),(90,132),(91,135),(92,130),(93,133),(94,136),(95,131),(96,134)]])

51 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B6A···6E6F6G6H6I6J···6Q8A8B12A12B12C···12N24A24B24C24D
order1223···33333446···666666···688121212···1224242424
size11122···2444421082···2444412···121818224···418181818

51 irreducible representations

dim1111222222224444
type++++++++++-+-
imageC1C2C2C2S3S3D4D6SD16D12C3⋊D4C24⋊C2S32D4.S3C3⋊D12D12.S3
kernelC3314SD16C3×C324C8C32×D12C338Q8C324C8C3×D12C32×C6C3×C12C33C3×C6C3×C6C32C12C32C6C3
# reps1111141522844448

Matrix representation of C3314SD16 in GL8(𝔽73)

10000000
01000000
00130000
0072710000
00001000
00000100
0000007272
00000010
,
10000000
01000000
00100000
00010000
00001000
00000100
0000007272
00000010
,
10000000
01000000
00100000
00010000
0000727200
00001000
00000010
00000001
,
012000000
6712000000
0041540000
0050320000
000072000
000007200
00000010
0000007272
,
6819000000
415000000
007200000
000720000
000072000
00001100
00000010
00000001

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,3,71,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,67,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,41,50,0,0,0,0,0,0,54,32,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,72,0,0,0,0,0,0,0,72],[68,41,0,0,0,0,0,0,19,5,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C3314SD16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_{14}{\rm SD}_{16}
% in TeX

G:=Group("C3^3:14SD16");
// GroupNames label

G:=SmallGroup(432,441);
// by ID

G=gap.SmallGroup(432,441);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,36,254,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^3>;
// generators/relations

׿
×
𝔽